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Chapter III. Methods for finding the connections of a machine.
Alphabets and boxes

For any position of the wheels of a machine the letters of the alphabet can be put
into 13 pairs so that the result of enciphering one member of a pair is the other
member. These pairs are usually written one under the other and called ‘the alphabet’
at the position in question. Thus the alphabet for the wheel order Green Red Purple
and rod position 10 14 11 17 is

γ1

M S
V L
Z U
H Y
J E
T R
O G
I F
X D
K C
A Q
B W
N P

The order in which these are written is immaterial.

When we have two alphabets to deal with it is sometimes helpful to describe both
alphabets simultaneously in the form of a `box'. Take for instance the two alphabets

α2 β
V M V U
Z J O N
E S J W
G A H I
N P T M
X R F G
O F E Z
H I L R
L B Q B
D W X P
Y T Y K
U K A C
Q C S D

To form a box from these we choose a letter at random, say T, and write it down with
its partner in the first alphabet, Y, following it, thus TY; we then look for Y in the

                                                          
1 Editors’ Note: Turing has written KC and NP instead of KP and NC. It is likely to be an error, but it could also

be Turing’s way of adapting the data to fit his example.

2 Editors’ Note: This is the alphabet in column 6 of Fig. 13. Turing has written LB and QC instead of LC and QB.
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second alphabet and find it in YK; we write the K diagonally downwards to the left

from Y, thus TY
K ; now we look for K in

[ 17 ]

the first and finding it in KU write TY
KU. From this we get to 

TY
KU
V

 and 
TY
KU
VM

, but if we

were to continue the process we should get

T Y
K U
V M
T Y
K U
V M
T Y

.

.

We therefore draw a line, select a new letter, R say, and start again, writing our
results below what we have already written. Thus we get

T Y
K U
V M
R X
P N
O F
G A
C Q
B L

Eventually when there are no letters left we stop with the completed ‘box’ (α ß box)

T Y
K U
V M
R X
P N
O F
G A
C Q
B L
S E
Z J
W D
H I

There are various remarks to be made about boxes. A box completely determines
the alphabets from which it was made. Also it can be written in various forms
depending on the choices of letter which are made during the process, but two
different boxes made from the same alphabets can always be transformed into one
another by a combination of the processes
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i) Rearranging the order of the compartments
ii) Moving a number of lines from the top of the compartment to the bottom,

the order of the lines remaining the same
iii) Rotating a compartment through 180° about its centre, and then rotating

each letter of it through 180° about its centre.

At first sight it would seem possible that in making a box one might reach a state

of affairs like this 
AB
CD
E.

and that EA occurs in the first alphabet, and one would not then know what to do.
This is not actually possible as EA in the first alphabet would contradict AB. For the
same reason it is not possible to have E coupled with any other letter which has
already occurred.

If we think of the columns in a compartment of a box we see that the effect of
going down the left hand column of a compartment or up the right hand column gives
the result of enciphering a letter with the first alphabet and then enciphering the result
with the second. Consequently if instead of being given the alphabets we have the
result of this double encipherment we shall almost have the box. We shall not know
how much to slide the opposite sides of a compartment relative to one another, and in
the case of compartments of equal size we shall not know how to pair off the sides.

The effect of enciphering first with α then with ß I shall call ‘the permutation
ßα’, likewise the effect of enciphering with α then with ß then γ will be called γßα.
For these permutations there is a notation similar to the boxes. However this kind of
‘general box’ does not enable one to recover the original alphabets. It is also more
convenient to write them horizontally (the same applies to ordinary boxes, but the
tradition there is firmly established). As an example of the notation

γβα = (GKLAIFP) (YSUH) (TCWMZB) (DEXVRN) (J ) (O) (Q)3

[ 19 ]

This means that G enciphered at α (giving A), and then at ß (giving C) and
then at γ gives K, likewise K enciphered with γβα gives L, P enciphered gives G, and
J enciphered gives J. With the same notation the alphabet α could be expressed in the
form (VM) (ZJ) (ES) (GA) (NP) (XR) (OF) (HI ) (LB) (DW) (YT) (UK) (QC).

If the letters of a pair of alphabets are subjected to a substitution, and a new
box is made up of the resulting alphabets the sizes of the compartments of this box
will be the same as in the original box: in fact this box can be obtained from the first
box by subjecting it to the same substitution (except possibly for order of
compartments etc.): e.g. if we subject the alphabets α,ß to the substitution

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Z D G Y T N B H F I K O L U E M S R Q C J A V X W P

                                                          
3 Editors’ Note: The γβα box given in the original is (GKLAIYSUHFP) (TCWMZB) (DEXVRN) (J) (O) (Q)

which is wrong.
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(Z to replace A etc.) then we get the alphabets

α′ β′ α′β′
AL AJ and the box CW
PI EU KJ
TQ IV AL
BZ HF RX
XR NB MU
EN TP EN
HF OR BZ
OD SD GS
YV XM DO
WC WK QT
JK ZG PI
SG QY VY
UM 4 HF

Conversely if we are given two pairs of alphabets λ,µ and ρ,σ such that the sizes of
the compartments in the λµ box are the same as in the ρσ box, then it is possible to
find a substitution which will transform λ into ρ and µ into σ (in fact usually a great
many such substitutions). We have only to write the boxes in decreasing compartment
size (say), and then a substitution with the required property will be the one which
transforms letters in corresponding positions into one another.

[ 19a ]

The size of the compartments in a box, and the lengths of the brackets (cycles) are
important, as they remain the same if all the letters involved are subjected to the same
substitution, (which might be a Steckering). If we write down the lengths of the cycles
of a substitution in decreasing order we obtain what we call the ‘class’ or the ‘shape’
of the substitution, e.g. the class of γβα above is 7, 6, 6, 4, 1, 1, 15; with boxes there
are two ways of describing the shape, either by the lengths of the compartments or by
the numbers of letters in them. It is always obvious enough which is being used.

The following information about frequencies of box shapes may be of interest.

26 25%
24,2 13%
22,4 7.3%
20,6 5.4%
18,8 4.5%
16,10 4.0%
14,12 3.9%
22,2,2 3.7%

                                                          
4 Editor’s Note: This entry is crossed out in the original (XX). Boxing done by the editors gives the entry as CL.

5 Editors’ Note: The class given in the original is 11, 6, 6, 1, 1, 1 which corresponds to the faulty γβα box as used
by Turing.
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The phenomena involved

Before trying to explain the actual methods used in finding the connections of a
machine it will be as well to shew the kind of phenomena on which the solution
depends.

The most important of the phenomena is this. Suppose we are given the alphabets
at the positions REA FKA WMA and also at REB FKB WMB then there is a
substitution which will transform the alphabet REA into REB, FKA into FKB etc. The
substitution is that which transforms letters of the column of the rod square
corresponding to position A into the letters on the same rod in column B. When we
are given complete alphabets we can box REA with FKA and REB with FKB, and the
substitution will have to be one which transforms the first box into the second. As an
example of this phenomenon we may take the alphabets and boxes

REA REB REA REB
REA REB FKA FKB WMA WMB FKA FKB WMA WMB

EX RO KH ZJ TW XI EX RO EX RO
UL FU JQ NP QD PG UL FU UL FU
HG JM NL EU ZF HB NK EZ KN ZE
CD AG GC MA RN VE HG JM RT VX
YV KL ZR HV VJ LN CD AG WI ID
FS BY IO DC OC CA MQ SP PB TW
RT VX PA TQ KL ZU JZ NH YV KL
QM PS BW WI GS MY RT VX JZ NH
WI ID TV XL BY WK VY LK FS BY
BP WT SY YK IP DT SF YB GH MJ
AO QC MD SG HM JS WI ID MQ SP
JZ NH EF RB AU QF OA CQ DC GA
NK EZ UX FO XE OR PB TW OA CQ

The substitution which will transform REA into REB, FKA into FKB, WMA into
WMB, the box REA/FKA into REB/FKB and REA/WMA into REB/WMB is

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Q W A G R B M J D N Z U S E C T P V Y X F L I O K H

In this example the alphabets have been written out in such a way that a letter and the
result of applying the substitution occupy corresponding positions. Of course if our
alphabets were data from which the substitution was to be found this would not
generally be the case. Our problem would be to arrange them or the boxes made from
them, in such an order.
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We might for instance [be] given the alphabets in the more or less alphabetical order

REA REB REA REB
REA REB FKA FKB WMA WMB FKA FKB WMA WMB

AO AG AP AM AU AC AO AG AO AG
BP BY BW BR BY BH IW SP CD PS
CD CQ CG CD CO DT BP NH QM JM
EX DI DM EU DQ EV CD VX HG YB
FS EZ EF FO EX FQ MQ LK SF HN
GH FU HK GS FZ GP JZ YB ZJ LK
IW HN IO HV GS IX RT RO VY WT
JZ JM JQ IW HM JS VY FU BP DI
KN KL LN JZ IP KW SF EZ IW XV
LU OR RZ KY JV LN EX JM TR EZ
MQ PS SY LX KL MY UL CQ NK UF
RT TW TV NP NR OR NK TW LU QC
VY VX UX QT TW UZ HG ID EX OR

and then make from them the boxes on the right. From the right hand pair of boxes we
see that E must become either O or R in the substitution, and we can try both
hypotheses out by arranging the first two boxes correspondingly. If the first box is left
as it is, the corresponding rearrangements of the second are

.. ..

.. ..

.. ..
HN AG
PS SP
GA NH
MJ VX
ZE LK
UF YB
OR RO
BY FU
KL EZ
XV JM

The first of these rearrangements is impossible. It implies for instance that in the
substitution C becomes H and M becomes P but in the third box C and M are on
opposite sides of a compartment while in the fourth H and P are on the same side.
Actually we have in the six alphabets rather an embarras de richesse. It would really
be easier to work with say the first five alphabets and two constatations, AC and BH

say of the remaining one. Since B and H occur three apart in the same column of REB
FKB

the pair of letters of WMA from which BH arises by the substitution must occur three

apart in one of the columns of the large compartment of REA
FKA. The only possibility is

that BH arises from FZ, and we can check & complete the result with the AC.
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We make use of a third phenomenon when we have found some parts of the rod.
Suppose we find the substitution which transforms the first column of the purple rods
into the third

1 3 4 6 6

Z D J Y
D K W P
G E C A
Y V X I
T C D E
N F A D
B S T R
H Z G C
F H Z W
I U B N
K N R X
O T L Z
L Q V M
U B I V
E O Q J
M W N S
S N P T
R Y F K
Q G U H
C I Y B
J X K F
A P M Q
V L H U
X J E O
W R O G
P A S L

It is (ZDKNFH) (GEOTCIUBSMWRYVLQ) (JX) (AP)

and the substitution which transforms the 4th7 column into the 6th is

(JYBNSLZWPTRXIVMQ) (CADEOG) (HU) (FK)

These two substitutions are of the same ‘shape’, and if we write them like this

(YVLQGEOTCIUBSMWR) (NFHZDK) (PA) (JX)
(JYBNSLZWPTRXIVMQ) (CADEOG) (HU) (FK)

each letter in the lower line is below the letter which is three places further on along
the (QWERTZU) diagonal. We can see that this must happen because if we replace
the letters of the first and third columns of the rod square by those which are three
places back along the diagonal and then move the result three places to the right and
three upwards we get the fourth and sixth columns.

                                                          
6 Editors’ Note: Turing has circled the letter A in column 1 and the letter U in column 4 and joined the two

together with a line. Similarly P in column 1 is joined to H in column 4, P in column 3 with H in column 6 and
A in column 3 with U in column 6.

7 Editors’ Note: Originally written as third and fourth and then changed by hand into 4th and 6th.
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A rather similar phenomenon is useful when we know the diagonal of the
machine. In such a case we can make a correction to our constatations transforming
them into connections between the contacts on the right of the R.H.W. wheel instead
of between contacts of the Eintrittwalze. The constatations when so transformed are
described as ‘added up’ or ‘buttoned up’. The process can be carried out with two
strips of cardboard with the diagonal written on them, and in one case repeated. As an
example to make quite clear what this adding up process is take the fixed comic strips
[in] Fig. 11. The alphabet for this position of the machine is

(CD) (FR) (TV) (XO) (JK) (WQ) (AG) (PY) (BS) (HM) (IL ) (EN) (UZ)8

The added up alphabet can be obtained either by tracing through the wheels from the
purple column on the right back to this column again, or by applying the substitution

Q W E R T Z U I O A S D F G H J K P Y X C V B N M L
Y X C V B N M L Q W E R T Z U I O A S D F G H J K P

to the ordinary alphabet. It is

(FR) (TV) (BG) (DQ) (IO ) (XY) (WZ) (AS) (HE) (UK) (LP) (CJ) (MN)9

Instead of tracing the current through from the right hand purple column in Fig 11 we
can of course trace it through from the left hand purple column back to this column
again. This gives us a very simple picture of how the added up alphabets between
turnovers are related; one is obtained from another simply by a slide on this left hand
purple column, i.e. a slide on the last upright of the rod square. For instance if on the
comic strips [in] Fig. 11 we move the R.H.W. to rod position 15 we have the added up
alphabet

(EA) (RD) (VM) (IO ) (PN) (UB) (LF) (GW) (YS) (CT) (QJ) (KZ) (HX)10

which can be obtained from the added up alphabet at rod position 18 by the
substitution

T W V K S B C E Y U F H X Z M N J G O P A Q I R L D
R L D T W V K S B C E Y U F H X Z M N J G O P A Q I11

[ 24 ]

The saga

Suppose that one was left alone with an Enigma for half an hour, the lid being locked
down and the Umkehrwalze not movable, what data would it be best to take down,
and how would one use the data afterwards in order to find out the connections of the
machine? Can one in this way find out all about the connections? This problem is

                                                          
8 Editors’ Note: Turing has written BZ and US instead of BS and UZ which can be found from Fig. 11.

9 Editors’ Note: Turing has written HN and ME instead of HE and MN.

10 Editors’ Note: Turing has written YX and HS instead of YS and HX.

11 Editor’s Note: The last letter in the bottom row, I, is written as T in the original text, which is clearly wrong.
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unfortunately one which one cannot often apply, but it helps to illustrate other more
practical methods.

It is best to occupy most of one’s half hour in taking down complete alphabets. At
least nine of these are necessary as follows from this argument. If the solution is
completely determined by the data the number of possible different data must be at
least equal to the number of possible solutions. Now the number of possible different
diagonals is 26!, the number of ways in which one can wire up a wheel is also 26!, and
the number of ways in which one can wire an Umkehrwalze is approximately (26!)1/2,
so that the number of possible solutions is about (26!)9/2. The number of possible
variations of an alphabet is about (26!)1/2, so that the number of possible variations of
nine alphabets is about (26!)9/2, which is the number of solutions.

The practical minimum amount of data is surprisingly close to this theoretical
minimum. It is possible to find the connections with 9 properly chosen alphabets and
10 other constatations properly chosen. However, in order to shorten the work I shall
take an example where we are given 11 alphabets and 10 constatations.

[ 25 ]

Data for saga

AAA AAC ABA ABC CAA CAD ADA CAC
AAB AAD ABB ACA BAA ACB DAA BAD

AL AD AI AM AK AE AW AM AS AQ AZ SO UQ MJ HX MA
BS BC BY BS BO BS BV BP BO BV BN ZJ LB IL VS IU
CE EK CT CH CF CR CZ CE CP CH CO
DH FV DM DR DE DQ DX DW DJ DU DF
FM GZ EV EO GQ FL EJ FG EU EP EI
GR HN FN FQ HW GV FO HL FQ FL GL
IK IT GX GP IX HK GU IZ GV GM HX
JN JY HU IJ JP IN HI JO HY IZ JR
OZ LU JO KX LS JP KR KQ IL JO KP
PV OQ KZ LT MY MO LQ NU KT KN MY
QW PS LW UZ NR UY MT RS MX RW QV
TY RX PQ VY TZ WZ NS TX NR ST ST
UX MW RS NW UV TX PY VY WZ XY UW
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There will be a substitution which transforms AAA into AAB, ABA into ABB and
ACA into ACB. Following the method for finding such a substitution explained in the

last paragraph12 we form the boxes AAA
ABA, AAB

ABB and also AAC
ABC which will be needed

later.

AAA AAB AAC13

ABA ABB ABC ACA ACB CAA CAC

AL AD AI AM SO AS HX
SB QO HU BP ZJ BO VS
OZ MW GX CE CP
TY ZG DM DW DJ
MF VF TC FG EU
CE LU ZK HL FQ
DH YJ RS IZ GV
WQ PS NF JO HY
GR BC OJ KQ IL
NJ RX EV NU KT
PV TI BY RS MX
UX NH PQ TX NR
IK KE LW VY WZ

We want to rearrange the box AAB
ABB in the way that was done at the bottom of p. [21].

The substitution which transforms AAA
ABA into AAB

ABB must also transform two

constatations of ACA into SO and ZJ. The only constatations of ACA from which SO
could have arisen are LH, [&] VY. If OS arises from LH we should have to have a
substitution which involves ZJ arising from OE in ACA, and this does not exist.

[ 26 ]

However, if we rearrange it so that OS arises from VY we find ZJ arising from IZ. We

can similarly arrange AAC
ABC to fit with them and agree with CAA and CAC, and fit

AAA
CAA to fit onto AAD

CAD agreeing with BAA and BAD.

                                                          
12 Editors’ Note: Turing wrote “last paragraph” while he probably referred to the last section.

13 Editors’ Note: In the two boxes AAA/ABA (column 1) and AAB/ABB (column 2) letters are circled and joined
together by a line. The letter L in column 1 is joined to the letter O in column 2. Similarly O in column 1 is
joined to Z in column 2, E in column 1 with J in column 2 and H in column 1 with S in column 2. Also the
bigram HL in the box ACA is circled and joined with the bigram SO in the box ACB.



Chapter 3                                                                                            Dr. Alan M. Turing11

Rearranged Rearranged
AAA AAB AAC AAA AAD AAA AAD
ABA ABB ABC CAA CAD CAA CAD

AL VF GX AL AM AL TL
SB LU DM IK YV IK GP
OZ YJ TC TY QF TY KX
TY PS ZK HD DR HD HC
MF BC RS JN JI JN OE
CE RX NF RG EO RG IJ
DH TI OJ VP CH VP RD
WQ NH EV CE XK CE FQ
GR KE BY UX PG UX VY
NJ AD PQ MF LT MF MA
PV QO LW QW SB QW ZU
UX MW AI ZO NW ZO WN
IK ZG HU BS UZ BS BS

We can now write down the parts of the rods which are in the columns corresponding
to the window positions A, B, C, D though we do not know the correct order. They are

AVGT YSKX WNEU UMAV
LFXL MBRM QHVZ XWIY
SLDS FCSA GKBJ IZHG
BUMB CRNF REYI KGUP
OYTN EXFQ NAPE JDQO14

ZJCW DTOC PQLD
TPZK HIJH VOWR

The substitution which transforms the letters in the first column of these rods into
those on the same rods in the second column is

(AVOYSLFCREXWN) (BUM) (ZJDTPQHI) (GK)

That which transforms the second into the third is

(VGUMAPZH) (FX) (LDQ) (YTOWIJCSKBRNE)

and that which transforms the third into the fourth

(GTNFQOCWRMBJH) (XLDSAVZK) (EUP) (YI )

These three substitutions have now to be arranged one under the other in such a way
that the substitution which transforms the third into the second is the same as that
which transforms the second into the first, this substitution being a slide of one on the
diagonal. Clearly (FX) in the second has to fit under either

[ 27 ]

(GK) or (KG) in the first: if F is under G we cannot fit the second and third together,
for F occurs in a bracket of 13 in the third, and G in a bracket of 8 in the second. If F
is under K we can fit the three together like this

                                                          
14 Editors’ Note: JDQO should be placed between NAPE and PQLD.
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(AVOYSLFCREXWN)(BUM)(ZJDTPQHI)(GK)
(SKBRNEYTOWIJC)(QLD)(VGUMAPZH)(XF)
(NFQOCWRMBJHGT)(PEU)(KXLDSAVZ)(IY )

The diagonal is

APQBORYFKVZHIXGJWELUDMTCNS

Of course we do not know where the diagonal ‘starts’, but with a hatted diagonal like
this it does not matter. We can use the diagonal to put the rods in order and to give
them names. There is likely to be an error in our naming, because we shall not know
where to start naming either the rows or the columns. The difficult about naming the
columns simply means that we do not know the Ringstellung or the absolute positions
involved. If we have the columns correctly named but the rows wrongly we shall have
the wheel right except that the plate contacts are rotated with respect to the spring
contacts. It is very difficult to eradicate this. It can only be done if we have a great deal
of information about actual window positions and Ringstellung, e.g. if there is a
Herivelismus or if the letters of the Ringstellung are restricted to be all different and
no two consecutive in the alphabet except Z and A.

[ 28 ]

Our set of rods is

IZHG z
HIJH h
XWIY i
EXFQ x
GKBJ g
VOWR j
REYI w
LFXL e
KGUP l
JDQO u
MBRM d
OYTN m
FCSA t
NAPE c
PQLD n
BUMB s
DTOC a
CRNF p
YSKX q
AVGT b
ZJCW o
WNEU r
SLDS y
UMAV f
TPZK k
QHVZ v
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and we can transform all our data about other alphabets into the form of data about
rod couplings15. The ones we need first are

AA AB AC AD16

ah ax yw fv
be bl eh es
cu cw bd
dt dq px
fi ey gt
gw fj ki
jn ko zo
kq ms vl
lz nu ns
mo pt um
px gv jq
rv rh fc
sy iz ar

From these we can get the upright of the middle wheel. The first step is of course to
add up the alphabets. Here they are added up with Z as standard

AA* AB* AC* AD*

pi qj vu hx
ol rd dg mb
nd sl yc
mc to ow
kx uk es
je ve jh
ws zy xf
vb cp im
uh am pq
tr bn tn
qg wh lr
yz fx za
af gi bk

                                                          
15 Editors’ Note: These rod couplings can be used to remove the effect of the R.H.W. The 1st column is used to

transform alphabets where the R.H.W. is in position A, Like AAA, ABA, ACA, etc. The succeeding columns
are used to transform alphabets where the R.H.W. is in position B, C and D respectively.

16 Editors’ Note: The rod coupling transformations have been applied to the alphabets on page 25. AA is the
transformation of AAA, AB of ABB, AC of ACC and AD of ADD. ACC and ADD can be derived from ACA
and ADA with the use of the transformations on page 26.
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We now box AA* with AB* and AB* with AC*, and then rearrange AB
AC

*
*  so as to find

the substitution which transforms AA
AB

*
*  into AB

AC
*
*  and AC* into AD*

AA* AB* AB*

AB* AC* AC*
rearranged

pi qj jq
gq hw pc
je ot yz
vb nb am
nd ku ig
rt ve dr
ol sl ls
sw rd ev
hu gi uk
kx ma bn
fa zy to
mc cp wh
yz xf xf

This substitution sends each letter of the upright of the middle wheel into the next on
the upright; hence the upright is

lsezftrdgpjyxniqchukbmwvao

As we added up to position Z as standard this upright is the upright for position Z. We
can make out part of the rod square from it, there being difficulties about where to
begin as before
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ZABCD

LNJFB z
SWKOL h
EVRUP i
ZYDQW x
FMBEZ g
TOLHC j
RUINH w
DXSIQ e
GAXBV l
PGOZD u
JRHMK d
YITVN m
XCZSU t
NHADF c
IPMKJ n
QTVWO s
CZERS a
HLYAE p
UFPLI q
KQUXR b
BDGYT o
MJFCA r
WKNPG y
VSQJM f
ABWTX k
OECGY v

[ 30 ]

We can transfer our remaining data into information about couplings of the middle
wheel rods. By sliding the diagonal up the side of the rod squares we can get the
couplings immediately into added up form

A* B* B*

A* B* C* D* B* C* C*17 rearranged

ra as ay kd ra as wl
bt bn bi ox sl gz cr
ce cr cl wj eq do
di do dr kg jk vf
fo eq ez zv tx nb
gk fv fn fo ph iu
hy gz gs di wl my
jw hp hw un cr as
ls iu xp bt do gz
mx jk jq xm vf eq
nu lw kt yh nb jk
pq my mu pq iu tx
vz tx vo ec my ph

The left hand wheel upright is

rwdmqxeptznschkvbgfiyjoual
zhixgjweludmtcnsapqboryfkv
                                                          
17 Editors’ Note: The original has A* here which clearly is wrong.
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and under it has been written the diagonal. This serves to transform A or A+ into the
Umkehrwalze connections. They are

yv,fs,ce,zw,oi,mu,rj,qx,pk,nd,ht,bg,al 18

[ 31 ]

‘Adding up’ method

Most practical methods of finding the connections of the machine depend on getting a
long crib, either by ‘reading on depth’ (see Colonel Tiltman’s paper [long space]) or
by pinching. In many cases we expect the diagonal to have some special value, (e.g.
qwertzu because the original commercial machine had such a diagonal). In this case
the amount of crib is not very much. To estimate the amount of material that we have
it is best to work out

(Length - 2.5) × square of average ‘corrected depth’

Call this the ‘material measure’. By corrected depth we mean the actual number of
constatations, so that this can never exceed 13. As regards the amount of material
necessary, it will almost always be impossible to get the wheel out with less than a
measure of 90, from 90 to 140 it will be a matter of chance whether it comes out or
not. From 140 onwards it will always come out, but with increasing ease as the
material measure mounts up. With a material measure of [3?]00 it is so easy that the
trouble of adding up further material would be more than would be gained in
shortening the further work. The method is essentially the same as we used for finding
the middle wheel in the case of the saga. Here however we have to do with partial
alphabets or even single constatations instead of complete alphabets. We cannot
therefore do any boxing. After we have added the material up we take some
hypothesis about the upright, e.g. that F immediately follows K and work out its
consequences. If for instance we find the (added up, I shall omit to mention this in

future) constatations K
R  and TF  immediately following one another we can infer that T

immediately follows R on the upright. This we may express in the form

KF – RT

the dash denoting logical equivalence. We follow out the consequences until we reach
a confirmation or a contradiction. When there is

Here KF means ‘F follows K on the upright’. KF2 would mean K & F are two apart
[on the upright].19

[ 32 ]

plenty of material we do not usually work a hypothesis unless there is going to be an
immediate confirmation, e.g. if TC implies RJ from two different parts of the crib.

                                                          
18 Editors’ Note: We believe Turing made two errors when he derived the UKW connections and that the correct

connections should be: es, ca, yu, zo, rp, jm, hq, ig, fv, nl, xw, bt, dk.

19 Editors’ Note: Turing’s hand written note. The end of the last part is missing but we presume it is as we have
indicated in the square brackets.
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This will mean to say that the constatations T
R  and JC occur consecutively twice over.

Alternatively we can say that T
R  occurs twice over at a certain distance and that J

C
also occurs twice over at the same distance. In order therefore to find these profitable
hypotheses we have only to look for repetitions of constatations (half-bombes as they
are rather absurdly called). For this reason and also because later we will want to be
able to spot occurrences of a given letter at a glance, we put our material as we add it
up into the form in Fig. 19.

Now to take a particular problem. We are given material six deep and 100 long,
and we expect that the diagonal is qwertzu. Our material is

MYC..
NGJ..

RCA..
YID..

DAS..
TTV..

YON..
RMI..

OFL..
VQO..

MUX..
NJQ..

(I must apologise for it not making sense).

We decide to try out the hypothesis that there is no T.O. in the first seven columns,
and therefore we add up the columns 1-7, 27-33, 53-59, getting

LCN..
MJY..

TBF..
XAH..

FDG..
ZUM..

...
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[ 33 ]

1  2  3  4  5  6  7 27 28 29 30 31 32 33 53 54 55 56 57 58 59
A B  B           H  I V  U     D  K  B  O J        I A Q
B A  A  R        Y  E       P  O     A  P P        J  P B S
C    J     N    Y     J     R    X C U ?
D    U  E  Q    H     A        Z                L D X
E    H  D        I  B             X     O E V
F Z     H  H        Y       Y  Z        N    T  O     J  G  U F P
G       M           K J  P        Y    V        V  F G W
H    E  F  F  W  A    D       V H T
I                E  D          M  N  P    U     A     X  Q I R
J    C G        C A        B  F  U J G Z
K             M     G             A  T          T K Y
L M             M  Z O        Y     D L A
M L     G     K       Z  I  L U    U         V  R M B
N       Y  C  Q       U     I     F N C ?
O    P           X S        B        A L  P  F           E O D
P    O        T    G  B        I  B B  O        B     W P E
Q    S  S  D  N X           X    Z  X  U        I Q F
R       B  U                C                   M R G
S    Q  Q O       Z     Z S H
T X           P       X        K    F     K     Y T I
U    D     R    A  N        V M  I  M  Q     J  F U J
V A              U  X    G  H  X  G  M V K
W             H Y                 P W K
X T              O Q     T     Q     V    C  Q  V  E  I X M
Y       N        B  F    C  F     G W        L     T Y Q N
Z F       M  F     L  D    Q  S     S Z O

Fig. 22

q w e r t z u i o a s d f g h j k p y x c v b n m l
A Q F P E V K Y N C U J Z O D X M Z B H T I R G W L

m l q u ? ? f ?
W L A Q F P E V

Fig. 19
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[ 34 ]

However we put the material directly into the form in Fig. 19. We see numerous half-
bombes and do not need to make any more analysis of their lengths in order to find a

profitable start. The half[-]bombes Q
S  and FH suggest the two possible starts QF=SH

and QH=SF (the two strokes meaning a double implication, not equality!). The
consequences of the second of these are shewn in Fig. 20. A contradiction is quickly
reached. The consequences of QF [are shewn] in Fig. 21. The loop QF-ZO-MB-UJ-
QF gives a second confirmation, and our hypothesis is now a virtual certainty. We
now abandon the tree figure for an alphabet with consecutives written against them
(Fig. 22). All goes smoothly except that there is clearly an error in our data as we have
a few contradictions. We sort out the good from the bad by using pairs of letters two
apart on the upright. Thus JO2 – AF2 confirming JZ, ZO, AQ, QF. When we have
checked them all we can write out the upright of the R.H.W.

AQFPEVKYNCUJZODXMBSHTIRGWL

We then have to find the upright of the M.W. To do this we use the same process as
we did with the saga. We have to find the added up couplings of the middle wheel.
This can actually be done without either adding up separately or writing out the rod
square, simply by having two movable strips with the upright and qwertzu written out
on each, and sliding these above the (added up) crib till the constatations agree with
pairs of letters on the strips directly above. We can then read off the coupling from the
row of qwertzu letters, taking the pair of letters in column 1 for columns 1-7 of the
crib [,] column 2 for 27-33 etc. Under Fig. 19 is shewn the strips as set for reading off
one of the added up couplings for 53-59, viz. [aq]. The added up couplings that we get
are

1–7 27–33 53–59 79–85 105–111
qp hx qa jn zm
wb qs wj xv ti
ef wu eg tr
ry ek th fh
tn rn rv ql (some of these being supposed
zu tc zx up obtained from material not
ix zy um oy yet given)
os ia io ds
ag ov sk wb
dm dj db ci
hv fm fy gz
jc gb pn em
kl pl cl ka
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[ 35 ]

Boxing these together we get

1–7 27–33 53–59
27–33 53–59 79–85

qp hx qa
lk zy ks
ef fm db
md uw wj
jc jd np
tn bg um
ry ek eg
zu sq zx
wb ai vr
ga ov th
ix rn fy
hv pl oi
os ct cl

When we fit these boxes together we fail miserably, and so we have to assume that
there is a double T.O. somewhere, in spite of all the boxes turning out the same shape.
We find that this is between the first and second alphabets, and that the remainder can
be fitted together with the upright

wbnhcovrtixlyazqpgfkmsuedj

[ 36 ]

I will give a second example of the ‘adding up’ method for a case where it is only
just possible to get the problem out. The material is given in Fig. 23 all ready added
up. There are no ‘equidistances’ (half-bombes with equal distances) and so we have to
make an analysis shewing all the consequences of any hypothesis that one letter
follows another on the upright (Fig. 32). For instance from the analysis we see that
AV, HT, NF, ZA [,] are all consequences of IM. The pencil letters round the outside
were put in to help with the making of the analysis and were used in connection with
columns 32, 33 of the material. Of course some of the consequences will be false
owing to turnover, but as we are dealing only with distances of 1 we can hope to
neglect this without harm. We now pick out squares with a large number of entries in
them and follow out the further consequences of them[,] making trees as before, and
hoping to find confirmations. When we get contradictions we leave the tree for the
present but have to remember the T.O. possibility [(]Figs. 25–30[)]. When we get
stuck we can sometimes continue using consequences which are of the form that two
letters are at distance 2 on the upright. For this purpose an analysis of positions at
which letters occur is useful (Fig. 24). In particular we need to do this at Fig. 30. Now
VW and WY imply VY2 and PR and RS imply PS2 and these imply one another from
columns 19, 21. We also get GL2 which starts off another train of consequences
involving another confirmation (Fig. 31). Eventually we get stuck with the bits of
upright
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V W Y
N . Q P R S

U H J K
F G I L . O

B . E

We might try putting in KA as a hypothesis, afterwards try KB etc. (KA appears at
first to give confirmations, but these are bogus. The only reliable rule about
confirmations is to try leaving a constatation out and then see if it can be inferred from
the hypothesis). We might also try

[ 37 ]

putting in as many new constatations as possible which are consequences of those we
have and our available information about the upright, and then start off afresh with
some new distance on the upright, say 5. But there is a quicker road to success. Note

the constatation HJ  in 1 and GI  in 17. Since we have J following H and I following G

on the upright it seems highly probable that we have HG10 and JI10. If this is so we
have this as part of the upright

FGIL.O....UHJK

hence OH6 which implies PK6 giving us this as upright

FGILNOQPRSUHJK

From this we get many confirmations and are able to fill in the whole of the upright
(except X which goes in the one remaining place). Note that the T.O. which actually
occurs between 24 and 25 has not troubled us at all.

[ Pages 38 – 40 missing ]20

[ 41 ]

Clicks at twenty-six-distance

This is a method for finding the connections when we do not know the diagonal. It
is very similar to the beginning of the saga, in principle. It depends on making
hypotheses about pairs of letters being on the same rod, and drawing conclusions to
the effect that other pairs of letters are on the same rod. Suppose for example that in
our crib were the following constatations

5 6 31 32 57 58 83 84
A E F E T U P U
F G T R P R A G

We might make the hypothesis that on the rod which has A in column 5 there is G in
column 6. We could then infer that there was another rod with F and E in columns 5,
6, and likewise rods TR, PU and this confirms our hypothesis that there was a rod AG.
                                                          
20 Editors’ Note: The pages 38 to 40 are missing from the archive copy of the original.



Chapter 3                                                                                            Dr. Alan M. Turing22

Proceeding in this way we can with sufficient material find sufficiently much of some
of the rods to be able to find the diagonal by the same method. The amount of the
material needed is very great. We adopt a measure similar to the one for 'adding up'
viz.

(length-39) × square of average corrected depth

I believe it is practically impossible to solve any problem with this measure less than
2000. It should be possible for 3000 but might sometimes a great deal of labour. With
the example given here the measure is 4400.

When the material is sufficient we avoid taking hypotheses at random, and
choose ones which we can see without very much analysis, to lead to a confirmation.
This would be the case for example with these constatations

5 6 31 32
R E R E
V D V D

Either the hypothesis that E follows R or that D follows it on a rod would be
immediately confirmed. In the absence of other information the probability that one or
other of these

[ 42 ]

hypotheses is correct is about 79%. Our first job therefore is to look for such
configurations of letters. All that we have to do is to analyse the constatations which
have the same right hand wheel position, and ring round any repetitions. We then
write out the ringed constatations on a separate sheet (Fig. 34). With the first
occurrence of each constatation we give a number shewing how far on the other
occurrence is. This plan also shews us where the T.O. is likely to be. It should be
mentioned that in the case of this material there were two turnovers known to be 13
apart. The principle of spotting the turnover is this. Consider for example the
constatations HE at b,II and b,X and JE at i,II and i,X.the first pair of these
constatations shows that there must have been a pair in common between the coupling
at b,II and b,X. Likewise there must be one in common between those at i,II and i,X. It
is therefore fairly likely that there is no turnover between b,II and i,II, as if there had
been it would have been quite likely that after the T.O. there would no longer have
been a pair in common in the couplings. The evidence from a single such instance is
rather slight, but with as much material as we have in our present problem we can fix
it with no doubt at all, as occurring between z and a and between m and n.

It is worth while writing down all the favourable hypothesis under the pairs of
columns of the rod squares involved (Fig. 35). We have done this only for the part a to
m, and find that in five cases there are two favourable hypotheses viz. col. b with e,
col. b with h, col. d with j, col. e with i, and col. g with j. We hope that in some of
these cases the favourable hypotheses will imply one another, making them both
virtually certain. The consequences of these hypotheses are shewn in Figs. 36–40. The
notation is this. An expression like OF under the head ‘d into j’ means that the rod
with o in col. d has F in col. j, and the strokes joining these mean that one can be
deduced from the other. In the case of g into j the two hypotheses are essentially the
same and we have an immediate
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[ 43 ]

confirmation. With b into h we find that both of the first alternatives of the one
hypothesis contradict both alternatives of the other. With d into j we manage to
connect the two hypotheses together and with e into i we fail to connect but one of the
hypotheses confirms itself. The information we have obtained about the rods from this
is expressed in the Fig. 41a. In order to avoid bogus confirmations in what follows it
is as well whenever we make a deduction to cross out one of the constatations used in
the deduction. Up to this point the crossing out has been done with red strokes
slanting up to the right. (Green vertical strokes were used to eliminate repetitions of a
constatation, red vertical strokes to remove contradicted constatations). From now on
for a time we will use similarly slanting green strokes.

Up to now we have simply been trying to ‘get a start’, and so long as we could get
some fairly considerable bits of the rods square fixed we did not very much care what
parts they were. But now we have got a fully adequate start, and we should consider a
plan of campaign. In general what we want is to have most of the letters of the rods in
columns p, p+q, p+r, p+q+r, t, t+u, t+r, t+u+r, of which any number may coincide,
provided q, r, u are none of them 0. If we then find the permutation which transforms
col. p into col. p+q expressed in cycles as on p. 18 or p. 26, and similarly for
constatations p+r and constatations p+q+r. A slide of r on the diagonal will transform
these into one another. We get further information about a slide of r on the diagonal
by finding the substitutions that transform col. t into col. t+u, and col. t+r into col.
t+u+r. Between the two sets of information we should have enough to reconstruct the
diagonal (unless r=13 and as long as the bits of rod are not too incomplete).

[ 44 ]

In the present case we can take the columns c, d, f, g, j, k; giving them the
numbers 3, 4, 6, 7, 10, 11 instead of the letters, this corresponds to p=3, q=3, t=6, u=4,
r=1. In order to get these columns we look at Fig. 35 for suitable hypotheses to work
in order to add in the extra columns. These hypotheses enable us to write in extra
letters in the Fig. 41a and we continue to write in letters in this figure until we reach a
confirmation or a contradiction. Until we reach a confirmation it is as well to
differentiate the letters that are certain from the rest. The hypotheses that we actually
used were: c into g IQ=SE: g into k XE=ND. After a considerable amount of work our
rods look like Fig. 41b. The lines crossed out are ones that have been amalgamated
with others. We now think we can start to look for the diagonal, and therefore make
up the permutations transforming c into f, d into g, f into j and g into k. The notation is
that of p. 19, except that we are mostly unable to complete the brackets, and leave
dots.
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c into f

...DCYQFVJZTAXHIN...SGOPR...KE...LUB...M...W...

d into g

...KWCM...ANSY...GLIJ...TUQ...DEBXOR...FPZV...H...

f into j

...QOTK...UHJNGR...BSZW...PFA...CXIM...YD...E...L...V...

g into k

...IND...(EX)...KF...TYHZ...MQBLJWURG...PA...C...S...O...V...

We have now to write the c into f permutation over the d into g permutation, and the f
into j permutation over the g into k in such a way that a given letter in ‘c into f’ and in
‘f into j’ stands over the same letter in ‘d into g’ and ‘g into k’. To get a start on this
observe the configuration of the ringed letters. This suggests that we arrange the
permutations in this way

D C Y Q F V J Z T A X H I N
D E B X O R

( Y D )
( X E )

[ 45 ]

This is further confirmed many times, and we get the permutations arranged like this

( D C Y Q F V J Z T A X H I N ) M S G O P R
( E B X O R A N S Y G L I J D ) K W C M T U Q

( Y D ) Q O T K U H J N G R C X I M P F A
( E X ) O T Y H X I N D M Q B L J W U R G

giving us the partial diagonal on a slide of 1

...BCSZ...EDNJIHK...LXYTOQRF...WMGAV...UP...

Z must be followed either by E, L, W or U. If it is U we get

L U B
F P Z V

and the diagonal slide as

(BCSZUPLXYTOQRFEDNJIHKWMGAV)

If Z is followed by L we have the bits

M S G O P R K E L U B W
K W C M T U Q H F P Z V



Chapter 3                                                                                            Dr. Alan M. Turing25

to fit together, which we find can only be done like this

(KEMSGOPR) (BWUL) (KEWLUBMSGOPR)
(HKWCMTUQ) (FPZV) or like this (HFPZVKWCMTUQ)

giving the diagonal slides

(EDNJIHK) (...)
(UP)

both of which are impossible. If Z is followed by W we have the bits

M S G O P R K E W L U B
K W C M T U Q H F P Z V

which fit together only as

(KEMSGOPR) (LUBW)
(HKWCMTUQ) (VFPZ)

and as before the E
K  configuration makes this impossible. We cannot have Z followed

by E because of the impossibility of fitting KE
H  onto [FPZV] with E over Z. The

diagonal is therefore

BCSZUPLXYTOQRFEDNJIHKWMGAV

[ 46 ]

After the previous examples that have been given it is hardly necessary to explain
how to get the uprights of the various wheels after this point. The upright of the right
hand wheel would be obtained by rearranging our bits of rod, and the middle wheel by
the method described on p. 28. With luck we might find other messages on the same
day with different L.H.W. positions and so find the L.H.W. upright. In the case that
the Umkehrwalze is movable this may be rather tricky, but in such a case there are
probably no Stecker, and we should be able to solve other days by single wheel
processes, with the known wheels in the R.H.W. position, and hope for the unknown
wheels to occur in the M.W. position.

In the example given above the diagonal is actually ABCD… with Stecker. We
might have had a hatted fundamental diagonal with Stecker, and of course in such a
case we could not have said what the fundamental diagonal was. We should then have
had to proceed to try to solve other days keys by spider methods, without diagonal
board, and assuming temporarily some arbitrary diagonal as fundamental diagonal,
and non reciprocal steckering. With two or three such keys we should be able to find
the actual fundamental diagonal by comparison of the steckered diagonal.
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[ Pages 47–59 missing ]21

[ 60 ]

Finding new wheels, Stecker knock-out

So far we have been dealing with the problem of getting out the connections of an
entirely new machine, or one for which we know no more than the diagonal. There is
another problem, that of finding the connections of some newly introduced wheels, the
old wheels, or at any rate some of them, remaining as well; this includes the case of a
change of Umkehrwalze.

The most hopeful case for getting out the new wheels is when one of the known
wheels occurs in the R.H.W. position. If the machine has no Stecker there is no
difficulty. We solve some messages by single wheel processes. This will be slightly
more difficult than when we know the connections of the middle wheel, as we shall
have to guess what is said in three or four different turnovers. However when the
R.H.W. rod start has been found from a guess in one turnover it does not take any time
to test a mot probable throughout the messages (the rods on which the various letters
of the message occur can be written down once for all, and the mot probable punched
out and run over the inverse oblong). For simplicity let us suppose that we have read
the message right through. We then have the couplings in several consecutive
positions of the middle wheel, and can apply the method of p. 28, 29 to find its
upright.

In the case that the machine has Stecker we need rather more data, and very much
more patience. The sort of data that one needs is a crib of length about 70, or else one
of length 26 and depth 2. The trouble about cribs without any depth is that one uses up
a great many of the constatations between each turnover in determining the coupling.

An example is shewn of a crib of length 18 and depth 2. This is to be regarded as
one of greater length which has been cut down to allow for turnover. The text of the
crib is shown at the top of Fig. 42. We are taking the worst case of 13 Stecker. There
are several half-bombes in the crib, and we decide to work with TW. We have to
make 17576 different hypotheses, (app) corresponding to the 26 different places on
the R.H.W.

                                                          
21 Editors’ Note: The pages 47 to 59 are missing from the archive copy of the original.
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[ 61 ]

A N T R A N S P O R T C H E F S E E
F G N Y F Z J W I O W D U D L M H D

L I S T Y W E W A V O N W E W A Z E H N
T A D J S B U T U L C M A D T E F D K M

A F I F U W E A G 3
B W B T 1
C O D C
D S C E E D
E U D A H D E W 1
F A A L Z F O 8
G N G A 3
H U E H V 7?
I A O I
J T S J L 11
K K M 6
L T V F L J 11
M N S M K 6
N G T Z M N S 4
O I R C O F 8
P W P
Q Q
R Y O R
S D Y J M S N 4
T L N J W W T B 1
U E A H U
V L V H 7?
W B P T A T W E 1
X X
Y R S Y
Z N F Z

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M S F U O G L B F H E Y I J K R K M N W B E F H E L o1
Z A C Z G H N A P J B G W A C Z T D E F M F H I R W j

L Q G K M J D N O P W P R S B G J K M J Q R X K Z T t1
A C D M R U V X U B C I V K E W B R V X U O Y Z A H e

R H L N K E O P Q X Q S T C H K L N K R S Y L A U M u2 [10?]
Q N H R S T A T V W F K N O Q N U V B O D X P J K O x

G Z B C L Q T U W T A B H U J D V A Q U W T N X Y Z d5 [9?]
O I S T U B U W X G L O P R O V W C P E Y Q V L P R y

Fig. 42. Investigating a correct hypothesis in a Stecker knock-out
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[ 62 ]

and the possible different ‘Stecker values’ of T and W. Any assumption as to the
Stecker values of T and W implies two rod pairings, and when we have set these rods
up we can look round and see if there are other Stecker which are consequences of the
rod pairings and the Stecker we have already. Any new Stecker we find may allow us
to set up more pairs of rods. So we go on until either no new consequences can be
drawn (this may be rather frequently the case), or there is a contradiction. If there is
confirmation and afterwards we can draw no further consequences it may be worth
while bringing in extra hypotheses.

In the actual working it seems best to set the crib out as in Fig. 42, so that the
occurrences of any letter can be spotted at once. We write the Stecker values of the
letters in pencil on the right possibly on a separate sheet which slips underneath. In
order to avoid bogus confirmations we cover up the constatations with shirt buttons as
they are used. Fig. 42 shews the working for the correct hypothesis W/E, T/B. The
‘covered’ letters are shewn ringed. In order to shew how the working was done the
steps have been numbered, the number being put against the constatation used and
also against the Stecker values or rod pairing which resulted. The work as shown is
not quite complete. It is possible to go further and get the Stecker values of all letters
except D,X. There are six or more confirmations.

There are a number of other possibilities besides working from a half-bombe. It
depends largely on the number of Stecker expected which will be the most profitable.
When the number of Stecker is low (say 6) it is probably best to try half-bombes as
unsteckered and to look for clicks which have all four letters unsteckered.

It seems unlikely that this method will ever be applied, partly because of the
difficulty of obtaining the right kind of data. However much the same method could
be applied to find a new Umkehrwalze with data of the kind that arises with the air
Enigma. One may find the Ringstellung by Herivelismus, and also have a certain
number of constatations at known window positions arising from CILLI’s.

[ 63 ]

The wheel order may also be known from CILLIs more or less accurately. We now
make up rods giving, not the effect of going through the R.H.W. but through all three
wheels, and with the columns not corresponding to all possible positions, but to the
positions where there are known constatations, and use them instead of the ordinary
rods: there is no difficulty about T.O.

[ 64 ]

Identification of wheels

When one has found the connections of a wheel one naturally wants to verify that it
is not one of the wheels used in some other known machine. A convenient way of doing
this is to find the class of substitution which transforms one column of the rod squares
into the next (see p 19a). Thus the class of the wheel found on p 26 was 13,8,3,2. This
‘class’ is independent of what point of the rod square we take to be the top left hand
corner, and so is an absolute characteristic of the wheel. It even remains the same if the
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wheel is used in a machine with a different diagonal. In the case of an Umkehrwalze we
can form the class of the substitution consisting of going through the U.K.W. and then
sliding one position backwards on the diagonal. A list of characteristics for the known
machines is given below.

K Enigma Railway machine
I.  19,7 I.  24,2; two apart 18,5,2,1
II.  14,12 II.  12,8,4,2
III.  10,8,5,3 III.  14,8,3,1
U.K.W.  15,9,1,1 U.K.W.  24,2

Service machine Commercial
I.  13,6,4,3 I.  18,8
II.  16,10 II.  19,7
III. 7,7,6,6 III.  12,9,4,1
IV.  11,11,2,2 UKW.  22,2,1,1
V.  9,9,6,2
VI.  24,2; two apart 16,5,3,2
VII.  12,5,5,4
VIII.  24,2; two apart 22,4
U.K.W. A.  9,8,4,2,2,1
U.K.W. B.  10,8,7,1
U.K.W. C.  13,9,2,2


