
The history of Non-Secret Encryption

by J H ELLIS

Public-key cryptography (PKC) has been the subject of much discussion in the open literature since Diffie and

Hellman suggested the possibility in their paper of April 1976 (reference 1). It has captured public imagination, 

and has been analysed and developed for practical use. Over the past decade there has been considerable 

academic activity in this field with many different schemes being proposed and, sometimes, analysed.

Cryptography is a most unusual science. Most professional scientists aim to be the first to publish their work,

because it is through dissemination that the work realises its value. In contrast, the fullest value of cryptography 

is realised by minimising the information available to potential adversaries. Thus professional cryptographers

normally work in closed communities to provide sufficient professional interaction to ensure quality while

maintaining secrecy from outsiders. Revelation of these secrets is normally only sanctioned in the interests 

of historical accuracy after it has been demonstrated clearly that no further benefit can be obtained from 

continued secrecy.

In keeping with this tradition it is now appropriate to tell the story of the invention and development within 

CESG of non-secret encryption (NSE) which was our original name for what is now called PKC. The task of writing

this paper has devolved on me because NSE was my idea and I can therefore describe these early developments from

personal experience. No techniques not already public knowledge, or specific applications of NSE will be mentioned.

Neither shall I venture into evaluation. This is a simple, personal account of the salient features, 

with only the absolute minimumof mathematics.

The story begins in the 60's. The management of vast quantities of key material needed for secure communication

was a headache for the armed forces. It was obvious to everyone, including me, that no secure communication was

possible without secret key, some other secret knowledge, or at least some way in which the recipient was 

in a different position from an interceptor. After all, if they were in identical situations how could one possibly be

able to receive what the other could not? Thus there was no incentive to look for something so clearly impossible.

The event which changed this view was the discovery of a wartime, Bell-Telephone report by an unknown author

describing an ingenious idea for secure telephone speech (reference 2). It proposed that the recipient should mask

the sender's speech by adding noise to the line. He could subtract the noise afterwards since he had added it and

therefore knew what it was. The obvious practical disadvantages of this system prevented it being actually used, 

but it has some interesting characteristics. One of these, irrelevant to the main theme, is the amusing party trick 

of using the negative of the speech signal as the added noise. This leaves no signal on the line but the received

signal unimpaired. This is easy to do and somewhat startling, but a simple analysis of the feedback shows that 

it is simply an amplifier with a low input impedance which shorts out the line.

The relevant point is that the receiver needs no special position or knowledge to get secure speech. No key is

provided; the interceptor can know all about the system; he can even be given the choice of two independent

identical terminals. If the interceptor pretends to be the recipient, he does not receive; he only destroys the 

message for the recipient by his added noise. This is all obvious. The only point is that it provides a counter 

example to the obvious principle of paragraph 4. The reason was not far to seek. The difference between this 

nd conventional encryption is that in this case the recipient takes part in the encryption process. Without this 

the original concept is still true. So the idea was born. Secure communication was, at least, theoretically 

possible if the recipient took part in the encipherment.

The next question was the obvious one, "Can this be done with ordinary encipherment? Can we produce a secure

encrypted message, readable by the authorised recipient without any prior secret exchange of the key etc?" This

question actually occurred to me in bed one night, and the proof of the theoretical possibility took only a few

minutes. We had an existence theorem. The unthinkable was actually possible. The only remaining question

was "Can it be made practicable?" This took a while to answer.
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I published the existence theorem in 1970 (reference 3). Its outline is as follows. We may represent an encipherment

process by a look-up table, with the settings, message etc as the variables used for look-up, and the cipher text as

the contents of the table. Such a table will normally be impossibly huge but it could, in principle, always be

constructed. Conversely, such a table itself can be used as such a process, even if a more conventional embodiment

cannot be found. This proof treats the encipherment processes as tables, and demonstrates a form which satisfies

the requirements.

Suppose the recipient has two tables M1 and M3 while the sender has one, M2. These machine tables are not secret

and may be supposed to be possessed by the interceptor. M1 takes an input k and produces an output x. M2 takes

inputs x and p giving an output z. M3 takes inputs z and k. All these quantities are large numbers of the same

magnitude. We can think of M1 as a linear table or simple list, while M2 and M3 are square tables.

In operation p is the message which is to be sent, and k is a random number, the key, chosen by the recipient. He

enciphers k by M1 to get x which he sends. The sender uses x to encipher p with M2 to get z, thecipher text, which

he sends back. Now the recipient uses k to decipher z by means of M3. It is clearly possible for the entries of M3 to

give p under these circumstances, so we have achieved our objective.

If the numbers are large enough, and M1 and M2 sufficiently random to avoid working backwards, p cannot be

found without knowing k. In public-key-encryption terms, x is the public, encipherment key and k the private,

decipherment key.

Having thus demonstrated that NSE was possible, the next task was to find a practical implementation. There was

no difficulty in getting devices to behave as M1 and M2 in producing output from which the input could not be

found, although it was theoretically defined by the output. The problem was to devise a method for which M3

could be produced. Various ideas were found to have flaws, and there was always the possibility that we were

trying to break some subtle law of mathematics in looking for practicability. Of course there was no need to use the

format of the existence theorem; that was only one option. For instance, suppose we could find two secure

encipherment processes which commuted; presumably one process with two different keys but not necessarily. Then

the sender (S) could encipher his message, p, and send it to the recipient (R). R could now re-encipher and sent it

back to S. Because the two encipherments commute the result would be the same as if R had enciphered first, and S

second; so S could remove his encipherment. This text, which he sends back to R is the same as p enciphered by R, so

R can decipher. At no time is unenciphered text or key transmitted. This has the disadvantage of an extra pass, but

this does not debarr it.

Because of the weakness of my number theory, practical implementations were left to others. The first workable

idea was put forward in reference 4 by Clifford Cocks. This is essentially the RSA Algorithm. Briefly the method is

this. R chooses two large primes P and Q also prime to P-1 and Q-1, and sends N=PQ to S. S has a message which he

enciphers as C=MN (mod N).

To decipher, R finds P' and Q' 

PP' = 1   (mod Q-1) 

and QQ' = 1   (mod P-1)

Then M = CP'   (mod Q)

M = CQ'   (mod P)

so M can be found. The security lies in the difficulty of factorising N.

It is interesting to note that this method follows exactly the existence theorem; k is P and Q, x is N, p is M and z is C.

M1 is the startlingly simple process of multiplying the two parts of k, P and Q, together. M2 consists of raising M to

the power N (mod N) and M3 is the process of paragraph 14.
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The RSA algorithm (reference 5) differs in that R forms a pair of integers, d and e, such that 

de = 1 (mod (P-1)(Q-1)) 

He sends e and N to S, and S enciphers M as 

C = Me (mod N)

R deciphers as M = Cd (mod N)

The differences between the two algorithms are superficial. Cocks is a special case of RSA in that it puts e = N. Also

it suggests a more computationally efficient method of decryption by retaining the factorisation of N and carrying

out the exponentiation twice, but to the smaller moduli P and Q. Of course the decipherment could still be done by

forming d such the dN = 1 (mod(P-1)(Q- 1)). This technique for reducing the computation is now well-known in the

context of RSA.

The RSA algorithm has the merit that it is symmetrical; the same process is used both for encipherment and

decipherment, which simplifies the equipment needed. Also e can be chosen arbitrarily so that a particularlysimple

version can be had for encipherment. In this way the complex process would be needed only for the recipient.

Indeed, the same simple could be used for all encipherments, with the recipients just supplying different N. 

differences, however are small. The two algorithms are variants of the same method.

A couple of months later Malcolm Williamson came to me with a different scheme. This also involved the raising 

of the message to a power which was the product of large numbers, but relied on the fact that exponentiation 

was commutative. He published this in reference 6.

The paper was couched in the rather more general form of finite rings; but in terms of modular arithmetic the

scheme was for S and R each to choose a large number, k and l respectively. Taking the message again as M, to 

give some consistency in our notation, S sends Mk and R returns (Mk)l = Mkl; all calculations being mod some 

large prime, say P. S forms K so that Kk = 1 (mod P-1) and therefore MKk = M (mod P). So that by raising Mkl to 

the power K, S can remove his original encipherment leaving Ml which he sends to R. R removes l in the same way

and so recovers M. The fact that k and l need not be prime enormously helps their choice. They must of course, in

this version be prime to P-1.

Later he produced a simple, elegant scheme which was much easier to use. It was the sort of idea which is obvious

once some-one else has thought of it. In this a base x and a modulus q are known. x will be small and q large. S and

R each choose a large random number; say a and b. They then form xa and xb respectively and send the results to

each other.They both now form xab by raising the number they have received to the power of their own chosen

number. Thus after two passes and no decipherment process they both have a large number known only to them

which can be used as key in the normal way.

I described this method internally on a number of occasions, and, for this reason I suppose, I find I have often 

been given credit for it although I did, of course, acknowledge the source. I should like to take this opportunity 

of reaffirming that the credit belongs to Malcolm Williamson. He did publish it, much later than he thought of it, 

in reference 7. The method was published in reference 8 by Diffie and Hellman. This was identical to Williamson's

version, except that they restricted q to be prime.

One major class of openly published schemes is based on the Knapsack Problem. The first such scheme to be

published was due to Merkle and Hellman (reference 9). This was not anticipated within the closed community, 

but, although the Knapsack Problem itself is NP complete, the security of schemes based on it is weak.

This is the history of invention and early development of NSE by CESG. Some time after the basic work had been

done reference 1 was published by Diffie and Hellman. This was the start of public awareness of this type of

cryptography and subsequent rediscovery of the NSE techniques I have described.
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