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ABSTRACT: Umkehrwalze A was the original reflector used in the version of the Enigma
machine employed by the German armed services. Its wiring was originally de-
duced by the Polish cryptanalyst Marian Rejewski in December 1932 or January
1933, but details of the wiring have not previously been published. Sufficient in-
formation to recover the wiring analytically is provided in a wartime document
by Alan Turing, and other sources have been found to confirm the solution. This
paper presents the wiring, along with alternative methods of recovering it from
Turing’s data.
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INTRODUCTION

Umkehrwalze A was the original reflector issued by the German army in 1930
when it adopted Enigma I, the “steckered” or Wehrmacht version of the ma-
chine, for widespread use [3, p. 97]. It remained in service until 1937 when it
was superseded by Umkehrwalze B,1 which itself remained in service until the
end of the European war in 1945. Other reflectors were also introduced from
time to time: Umkehrwalze C, whose wiring was recovered almost immediately
by Hut 6 [12], was introduced briefly and then withdrawn; and the rewirable
Umkehrwalze D which was to pose a major problem to the Allies in 1944.2 The
wiring of Umkehrwalze A would have been recovered by Marian Rejewski during
his original cryptanalysis of the machine as described in [10].

∗This article represents the views of the authors but not necessarily those of their employers
or any other third party.

1Turing [11, p. 138] gives the date of the change as the summer of 1937. Rejewski [10, p. 264]
gives the much more specific date of November 2nd, 1937; since the change invalidated about a
year’s worth of manual work spent on building a catalog of permutation cycles, he undoubtedly
had good reason to remember the date.

2For a description of one of the machines developed by the Allies to recover the wiring of
the unknown reflectors, see [2].



The authors are not aware of any surviving example of Umkehrwalze A, and
so have been unable to measure its wiring directly. There is also no published
source for this information, even though considerable wiring information has been
published for the Wehrmacht Enigma and various other versions of the machine
(see references [3], [5] and [7]).

In the sections that follow, it is assumed that the reader is familiar with the
basic operation of the Wehrmacht Enigma. Details can be found in [3].

TURING’S DATA

In Chapter VII of [11], Alan Turing discusses the weaknesses of the original in-
dicating procedure used to inform the intended recipient of the wheel starting
positions (the so-called message setting) used to encrypt an Enigma message.
This procedure called for the operator to first set the three wheels to a Grund-
stellung (basic setting or ground setting), which was distributed as part of the
key for the period in question. The operator then selected three letters at ran-
dom as the message setting, and encrypted them twice in succession starting at
the Grundstellung. The resulting six letters formed the message indicator. The
operator then set the wheels to the message setting and proceeded to encrypt
the text of the message itself. The indicator was transmitted at the head of the
ciphertext, and at the receiving end the whole procedure was simply reversed.
Indicators of this form were known to Bletchley Park and the American agencies
as “throw-on” or, for reasons that will subsequently become clear, as “boxing”
indicators.

On page 129 of [11], Turing points out, as Rejewski had previously discovered,
that “The weakness of this indicating system is that a great deal of information
is given away about the ‘Grundstellung ’. If there were no Stecker and a known
diagonal,3 and the traffic amounted to 100 messages per diem4 it would be pos-
sible to find the connections of the machine, and if there were Stecker but the
connections of the machine were known it would be possible to find the keys every
day from the same amount of traffic.”5 To illustrate this point, Turing gives the

3The diagonal is defined as the entry permutation of the machine, i.e., the mapping between
the keyboard and the contacts of the entry wheel. For the Wehrmacht Enigma, as famously
guessed by Rejewski, this is the standard alphabet. That is, the permutation is the identity
permutation.

4Rejewski [10, p. 274] gives the number of messages needed as about 80 per key period.
5The Germans must have been aware of the weakness of this system since they abandoned the

use of a fixed Grundstellung on September 15th, 1938 [3]. The message setting was still doubly
enciphered, but now from a starting position chosen supposedly at random by the operator for
each message. Though not as weak, the new system still allowed solution by hand methods (for
example, using the perforated sheets described in [12]), and the traffic was compromised still
further by bad operator habits in choosing “guessable” starting positions. In May, 1940, most
German networks abandoned double encipherment altogether [1], but astonishingly its use was
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set of indicators shown in Figure 1 as an example of one period’s traffic.

UJOOBL AYIJPI SMLKFX CZNYOR VZPEOW GIILWI JSWSAS

VEYITM UJNOBR RFXCJV RLFCMN RSICAI UAMODC ZDIWXI

ALAJMB OQBVCY LGKZRP LMMZFC APTJNA SCQKLE KPBPNY

XDVBXV FNXDUJ BANRDR MIDHWU GJWLBS DLYMMM FTGDGT

QLYAMM AFIJVI GXJLEF AUXJJJ CWUYSQ EYVXPV HEKUTP

GRYLZM MIEHWZ EKXXYJ UWIOSI RBDCQU JNZSUG UHWOIS

JIPSWW KMIPFI TXNGER FXRDEK IHVQIV UANODR

YEIFTI NUZIJG OIKVWP EYYXPM OQFVCN HALUDX

BMARFB IIFQWN TIOGWL ZCDWLU RZHCOO UOGOHT

TZNGOR KGAPRB LNVZUV EZSXOH AVRJKK ZFUWVQ

Figure 1: Sample Message Indicators

From this information, the permutations linking the first and fourth letters,
the second and fifth, and the third and sixth can be written down as shown in
Figure 2 (where ‘.’ indicates a letter is missing from the sample of data).

For future reference, let us call these permutations T, U, and V respectively.
They can alternatively be written down as cycles:6

T: ...NIQAJSKP...TGLZW... (DMHUOVEXBRCYF)

U: (PNUJBQCLMFVKY)(OHIWSADXETGRZ)

V: (V)(I)(JFNRKPWSHOLX) ...DUQEZGTABYMC...

The ellipses indicate where the cycles cannot be directly completed due to
missing data. However, Turing points out that there is no doubt about how
permutation V must be completed — only letter D is missing and the parentheses
can be placed around the second group of letters. At first glance, permutation
T could be completed in two ways, but since it must consist of pairs of cycles
of equal length [11], and we already have one cycle of length 13, the two partial
cycles NIQAJSKP and TGLZW can simply be concatenated to form a second
cycle of length 13. This can be done in two ways, but they are equivalent to one
another, and we can deduce that PT and WN are the missing pairs.

The lengths of these cycles are very characteristic of the position of the wiring
of the three Enigma wheels at the Grundstellung, and the original Polish method
of attack on each new key was to prepare a catalog of cycle lengths and the Grund-
stellungen that could produce them. Turing does this hard work for us, stating
that the relevant wheel order is I, II, III (Wehrmacht Enigma, Umkehrwalze A),
with Grundstellung 1, 1, 26. This last information must be interpreted as mean-
ing window positions AAZ, with the rings set in the neutral position of AAA.

reinstated in 1941 on some naval networks [4, 9], and also continued in a somewhat different
form, but with similarly disastrous results, on some Abwehr networks.

6For details of this operation, see Rejewski [10, pp. 251–252] or Deavours and Kruh [3,
pp. 106–108].
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AJ AD AB

BR BQ BY

CY CL C.

DM DX DU

EX ET EZ

FD FV FN

GL GR GT

HU HI HO

IQ IW II

JS JB JF

KP KY KP

LZ LM LX

MH MF MC

NI NU NR

OV OH OL

P. NP PW

QA QC QE

RC RZ RK

SK SA SH

TG TG TA

UO UJ UQ

VE VK VV

W. WS WS

XB XE XJ

YF YP YM

ZW ZO ZG

Figure 2: Permutations Linking Indicator Letters 1&4, 2&5, and 3&6

Thus, since the Enigma machine steps when a key is pressed, with encoding
taking place at the bottom of the keystroke, the first letter of each indicator is
enciphered with the wheels in position AAA. Furthermore, since wheel III only
steps the wheel to its left when the letter visible through its window advances
from V to W, no middle wheel turnover will occur during the encipherment of
the 6 characters of each indicator.

Turing next deduces the Steckers that were used. From the catalog, he gives
the boxes for the (unsteckered) equivalents of permutations T, U, and V as shown
in Figure 3 (where the underlining indicates the end of a compartment within a
box).

“Boxing” is another way of representing the product of two permutations,7

7For boxing to be a meaningful operation, the permutations must be involutions; i.e., com-
posed solely of transcriptions of pairs of characters. Due to the presence of the reflector, the
permutation of the alphabet produced by the Enigma with the wheels set at any given position
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DT PZ CE

MG RN TQ

HL UG XU

UP JL JD

CK BE FO

AI QX RM

EJ OD NY

XV TV KB

BQ MI PV

NS FW WL

OR AS IG

YW KH HZ

FZ YC AS

Figure 3: Boxes for the Unsteckered Permutations 1&4, 2&5, 3&6

and is discussed at length in Chapter 3 of [11]. The pairs of equal-length cycles
into which the product decomposes form the left-hand and right-hand columns
of each compartment of the box. The cycles from these compartments must map
into the cycles we have derived from the indicators via permutations T, U, and
V, with any changes in letters due to the effect of the Steckers. Starting with the
short compartment AS from the last permutation, the letters A and S must map
to the cycles (V) and (I) from permutation V. Thus, either V is steckered to A
and I to S, or V is steckered to I and A to S. Looking at the number of common
letters and subsequences between the column ZNGLEXDVIWSHC of the middle
permutation, and the cycle OHIWSADXETGRZ from permutation U, we can
readily map these to one another as follows provided that V is steckered to A:8

(OHIWSADXETGRZ)

(CHSWIVDXELGNZ)

At the time this indicating system was in force, the German army used
relatively few Steckers, not more than 6 in a key. Thus the presence of so many
unchanged letters between these two cycles, along with the repeated substitution
I/S and S/I, is a good confirmation that the cycles have been correctly matched.
We can immediately deduce additional Steckers: O/C, T/L, and R/N. Matching
the remainder of the cycles from the boxes and from permutations T, U, and V
shows that these are the only Steckers for the key in question.

is always an involution. This was an operational convenience, since it made enciphering and
deciphering into the same operation, but a cryptologic disaster.

8The order of letters in a cycle is significant, but the choice of starting letter is not. Ro-
tations of the same set of letters yield cycles that are equivalent. Likewise, the pairs in a box
compartment may be rotated in sequence, and for matching purposes the entire compartment
may be reflected about its horizontal and vertical axes. For example, the middle permutation
in Figure 3 can be regarded as beginning: CY, HK, SA, . . . , and indeed this is necessary to
permit the matching described in the text.
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Turing goes on to discuss alternative methods of recovering keys from the
message indicators, as well as the much stronger indicating system introduced by
the German navy, but in this paper we are interested in determining the wiring
of Umkehrwalze A.

RECOVERING THE UMKEHRWALZE WIRING

If we focus on permutation T, the mapping between the permutations produced
by the first and fourth positions of the wheels following the Grundstellung, and
the corresponding box in the first column of Figure 3, we find that the rows
of this box are in fact the permutation produced by the (unsteckered) Enigma
when enciphering the first letter of each indicator. The order of the rows is
determined by the permutation produced when enciphering the fourth letter.
This follows directly from the method of constructing the boxes. To illustrate,
the first three rows of the first box are DT, MG, HL, which implies that the
permutation produced at position four contains the pairs TM (linking rows 1 and
2), and GH (linking rows 2 and 3).

Let us define as permutation A the “inwards” permutation produced by the
three wheels I, II, III at positions AAA (i.e., the positions used to encode the
first letter of each indicator). By “inwards”, we mean the combined effect of the
wheels as the electrical input from the entry wheel traverses them in the direction
towards the Umkehrwalze. Similarly, let us define permutations B, C, D, E and
F as the successive inwards permutations produced by the three wheels at the
positions at which the 2nd, 3rd, 4th, 5th, and 6th letters of the indicators are
enciphered.

If we define the permutation produced by the Umkehrwalze itself as R, then
the permutation produced by the (unsteckered) Enigma when in the position for
enciphering the first indicator letter is:9

A−1RA

And this must be the same as the permutation given by the rows of the first
column of Figure 3. Since we know the wiring and positions of wheels I, II, III,
permutation A is known,10 and we can readily obtain the value of permutation
R, i.e., the wiring of Umkehrwalze A:

(AE) (BJ) (CM) (DZ) (FL) (GY) (HX) (IV) (KW) (NR) (OQ) (PU) (ST)

We can cross-check this result by following the same process using permuta-
tion B and the second column of Figure 3.

9This formula, and others given later, follow the normal mathematical convention in that
they are intended to be read from right to left. In this case, permutation A is applied first,
then permutation R, then permutation A−1.

10It maps the standard alphabet into: ZNVAKQFMDWICLPYSRGUETBHJXO
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We could also take a somewhat more laborious approach to recovering the
wiring that does not rely on the properties of boxes. If we define the Stecker
permutation as S, we can write down the following equation for the relationship
between the first and fourth letters of the indicators:

TS−1A−1RAS = S−1D−1RDS

Eliminating S from both sides, and multiplying on the right by D−1 we get:

TS−1A−1RAD−1 = S−1D−1R

Then multiplying on the left by DS and rearranging we get:

R = DSTS−1A−1RAD−1

All of the permutations of this equation except R are known. Similar equa-
tions can be derived that relate R to permutations B, E, and U, and also to
permutations C, F, and V. To make the remaining explanation easier to follow,
the permutations corresponding to the subexpressions DSTS−1A−1 and AD−1 are
shown expanded in Figure 4, which once again is intended to be read from right
to left.

This is an equation in a single unknown, and a solution would permute
the rows of the two columns to align them in such a way that each combined
row would read across in a way consistent with all of the others. Suppose, for
example, that the first row, ZA and GA had been correctly aligned. This would
mean that the input letter to the right hand side of the transposition implied by
the combined row, A, would map to the letter Z on the output side. But note
that this would imply that the inner letters, A and G, would also have to map
to one another under permutation R. This is clearly a contradiction, therefore
the two partial rows are not correctly aligned. An alignment of any two partial
rows, say CS and VR, is in effect a pair of hypotheses about letters that map to
one another under permutation R, and each hypothesis implies the other. In this
case, the two hypotheses would be C/R and S/V.

Thus, given any starting hypothesis, we can quickly make from it chains of
deductions which will lead to confirmations or contradictions. Since each inferred
pair of letters from permutation R produces up to three further deductions (other
partial rows can be aligned using either their “inside” pairs or their “outside”
pairs), inferences propagate very rapidly and the starting hypothesis can quickly
be tested.

We also have some very good choices for starting hypotheses. The right-
hand column of Figure 4 contains the pair CC. This can only be aligned with
another row that contains a repeated letter, since alignment with any other kind
of row provides an immediate contradiction – C would have to be mapped to
two different letters under permutation R. There is only one pair in the left
hand column of Figure 4 that fits the bill: MM. Now we have a good starting
hypothesis, and the inferred pair CM can immediately be used to align other
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ZA GA

GB KB

XC CC

TD ED

FE XE

DF OF

KG WG

AH MH

NI RI

UJ DJ

YK UK

HL AL

MM TM

R = VN R SN

QW QO

WP BP

LQ HQ

PR VR

CS ZS

RT IT

IU NU

SV PV

JW YW

OX FX

EY JY

BZ LZ

Figure 4: Permutation Equation for R

partial rows: XC with MH, and CS with TM. This yields two new inferences for
permutation R: X/H and S/T, and the solution proceeds rapidly, yielding the
same value for permutation R that we derived more directly by working from the
boxes in Figure 3. When we arrive at a confirmation, i.e., we derive an inference
that agrees with one of our earlier deductions, that particular chain of hypotheses
can be taken no further. But due to the rapid rate at which inferences multiply,
we will usually have plenty of as-yet-unexplored inferences to follow and we are
unlikely to get stuck. Even if we did, we can take hypotheses derived from this
equation and start other chains using the companion equations:

R = ESUS−1B−1RBE−1 and R = FSVS−1C−1RCF−1

In the general case, we might not have such a good starting hypothesis avail-
able to us, but other options are available. For example, if we write out the
details of the equation resulting from the third and sixth indicator letters, R =
FSVS−1C−1RCF−1, we find the following sets of partial rows already aligned: LF
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LF; and VI VI. These are obviously consistent and form good starting points,
but such configurations are not infallible. We find a similar situation from the
remaining equation (second and fifth indicator letters): YE YE and AG AG. In
this case, the pairings as found are incorrect and will quickly lead to a contradic-
tion, but the alternative arrangement YE AG is obviously the next hypothesis to
try and leads to the correct solution. If all else fails, even an exhaustive approach
of picking a partial row and aligning with each of the possible alternatives in turn
would not take long to yield the right result.

CONFIRMING THE SOLUTION

The value of permutation R that we have derived is fully consistent with Turing’s
data, but that is not an absolute guarantee that it truly represents Umkehrwalze
A. Turing might, as elsewhere in [11], have simply constructed some self-consistent
data for illustrative purposes. However, at the end of Chapter III of [11], Turing
discusses the identification of wheels by their “class”, which is a kind of signature
derived from the cycle lengths of various permutations they produce. This is
discussed at greater length in [7]. The class is an absolute property of the wiring
pattern of a wheel and has the advantage of being invariant across the various
orientations of the wheel that might be encountered in actual use; it is expressed
as a series of numbers that add up to 26, by convention in descending order.
Turing lists the classes of various wheels that had been identified as of the date of
the document, including Umkehrwalzen A, B, and C. Unfortunately, the extant
copy of [11] in the U.S. National Archives (NARA) is of very poor quality in
places, and the classes are barely readable. We can state the following about the
class of Umkehrwalze A with reasonable confidence: it consists of six single-digit
numbers; the third number is 4; the last number is 1; the fourth number is neither
4 nor 3; and the fifth number is not 1. The second number might be 8. Since
the numbers are listed in descending order, the end of the sequence must be 4,
2, 2, 1, and since these total 9, the first two numbers must add to 17. The only
combination of two single-digit numbers that adds to 17 is 8 and 9. So it appears
that the class of Umkehrwalze A is 9, 8, 4, 2, 2, 1.

We take the class of an Umkehrwalze by setting out the permutation in full,
and then deriving another permutation from the first by replacing each letter
with the one preceding it in the alphabet.11 We then compute the cycles of the
result. For our derived solution, we set out the following permutations:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

EJMZALYXVBWFCRQUONTSPIKHGD

DILYZKXWUAVEBQPTNMSROHJGFC

11More strictly, we take the letter preceding in the sequence of the diagonal, i.e., the entry
permutation. But for the Wehrmacht Enigma the entry permutation is the standard alphabet.
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From the first and third rows we derive the following cycles:

(ADYFKVHWJ)(BIUOPTRM)(CLEZ)(GX)(NQ)(S)

The lengths of these cycles agree with Turing’s class data and provide addi-
tional confidence that the correct wiring for Umkehrwalze A has been identified.

Since the authors originally recovered the wiring using the methods described
in the preceding sections, further confirmation that it is in fact correct has been
obtained from two independent sources. The first is a report dated April 10th,
1944, sent to his commanding officer at Arlington Hall by Captain Fried of the
US Signals Security Agency, stationed at the time at Bletchley Park [6]. At the
time, Hut 6 was wrestling with the problems presented by the varying wirings
encountered for Umkehrwalze D, and in the process of trying to determine its
exact physical nature (and therefore its capabilities) had analyzed the wirings
encountered to date, comparing them with each other and with those of the
previously encountered versions A, B, and C. The report contains a table of
intervals between the letters forming the 13 pairings of each reflector. Those
given for Umkehrwalze A can be seen to correspond to the wiring given above:
1 pairing at each of the distances 1, 2, 5, 6, 12, and 13; two pairings at each
of the distances 8 and 10; and three pairings at distance 4. The second source
can be regarded as definitive: a handwritten document from the Bletchley Park
archives found among papers attributed to Oliver H. Lawn, a member of the
technical committee set up in 1944 to investigate Umkehrwalze D [8]. This gives
the wiring of Umkehrwalze A as: 1/5, 2/10, 3/13, 4/26, 6/12, 7/25, 8/24, 9/22,
11/23, 14/18, 15/17, 16/21, 19/20, which again can be seen to correspond with
the solution given above.
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