A possible implementation is suggested of J H Ellis’s proposed method of encryption involving no sharing of secret information (key lists, machine set-ups, pluggings etc) between sender and receiver.

Summary

A method for non-secret encryption (see [1] and [2]) is herein expounded. Non-secret encryption is a way of passing a message securely without the need for information (eg a machine set-up) known to the sender and recipient but not to any interceptor.

Introduction

The method set out below is a modification of my original idea suggested by J H Ellis. It is rather neater but presents the same problem to an interceptor as the original.

The method

The initial requirements for encryption are:

1. A shift register generating a linear recursive sequence of length p (prime).
2. Different random number generators held by the sender and recipient.

The sender wishes to send a fill A of the shift register and the encryption proceeds as follows:

a. The sender generates a random number k and calculates A^k which he transmits.

b. The recipient generates a random number l and calculates $(A^k)^l = A^{kl}$ which he transmits.

c. The sender solves the Euclidean algorithm to find K such that $Kk = 1 \pmod{p}$ and calculates $(A^{kl})^K = A^l$ which he transmits.

d. The recipient solves the Euclidean algorithm to find L such that $Ll = 1 \pmod{p}$ and calculates $(A^l)^L = A$ which is the message the sender wanted to give him.

The interceptor's problem

The interceptor trying to read the traffic is now presented with the problem:

1. Given A^k, A^l and A^{kl}, find A.

If he can solve the distance problem for the recursive sequence used he can find x, y, z such that

- $A^k = B^x$
- $A^l = B^y$
- $A^{kl} = B^z$
(B is the basic root of the recursion) and now \(A = Bw \) where \(w = xy/z \).

Unfortunately a solution to the interceptor’s problem does not seem to yield a solution to the distance problem.

Remarks

1. The security of the system depends upon no one discovering a good algorithm to solve the interceptor’s problem, but any method of encryption must depend upon something of this sort.
2. \(p \) need not necessarily be prime, but if it is not, then care must be taken that \(k \) and \(l \) are coprime to \(p \).
3. The information rate of the system is low in that 3 bits are broadcast for every 1 of the message. (The ratio in the method of [2] is 2 for 1).

References
